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Abstract 

Substitution of CO in (methylsorbate)-, (sorbaldehyde)- and (l-methoxycyclohe- 
xadiene)-Fe(CO),L by (+)-(neomenthyl)PPh, allows facile diastereoisomer sep- 
aration. The absolute configurations have been established by X-ray crystallography 
and circular dichroism spectroscopy. 

The application of (diene)Fe(CO), and [(dienyl)Fe(CO),]X compounds in enan- 
tioselective synthesis [l] depends on the availability of a range of fully resolved 
complexes of known absolute configuration. Most reported resolution methods are 
diene- or dienyl-based, and rely on either addition of chiral nucleophiles to cyclic 
dienyl systems 121, or classical resolution of complexes containing suitable func- 
tional groups (CHO, COOH) [3]. We recently outlined the potential of chiral 
phosphines in this respect using fractional crystallization of diastereoisomeric (di- 
ene)Fe(CO),L* pairs (L* = chiral phosphine) [4]. In many cases, successful di- 
astereoisomer separation may also be achieved chromatographically, and below we 
report application of this method to two classes of complex of some current utility 
in organic synthesis, together with assignments of absolute configuration. 

Phosphine substitution [S] of 1 and 2 using (+)-(neomenthyl)PPh, yields 
equimolar diastereoisomeric mixtures 3a, 3b and 4a, 4b that can be quantitatively 
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Fig. 1. Circular dichroism spectra. 

separated by preparative TLC [6 * 1. The almost mirror image nature of the circular 
dichroism spectra of 3a, 3b (Fig. 1) in the 250-550 nm region indicates little 
perturbation of these bands by the chiral phosphine, which is itself transparent in 
this region. Thus, the spectrum of 4a is essentially superposable on that of 3a, and 
the relationship to the tricarbonyl has been established by conversion of ( -)-1,12% 
enriched and obtained by asymmetric complexation [7] into a diastereoisomeric 
mixture of 3a, 3b which is 12% enriched in 3b. 
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The absolute planar configurations shown have been established from a crystallo- 
graphic analysis [6 *] of 3a (Fig. 2). The unit cell contains two crystallographically 
independent molecules of essentially identical dimensions, and the overall molecular 
geometry (Fig. 2) is that of a distorted square pyramid with phosphine in the axial 
position. The known configuration of the neomenthyl group (lS, 2S, 5R) establishes 
the configuration of the (methylsorbate)Fe moiety as (lS, 4R). 

In a similar way [6*], complexes 5a, 5b may be quantitatively separated and the 
absolute planar configurations established by conversion of 5a to an 85/15 mixture 

* Reference number with asterisk indicates a note in the list of references. 
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Fig. 2. Structure of complex 3a. Important bond lengths (A): Fe-P, 2.265(4); Fe-C(l), c(4) 2.180(3), 
2.166(12); Fe-C(2), C(3) 2.031(14), 2.058(13); Fe-c(S)O, C(6)O l-711(18), 1.723(15); C(l)-c(2), 

c(3)-C(4) 1.437(16), 1.402(16); c(2)-C(3) 1.361(18). Important bond angles (O): P-Fe-c/15), C(6) 
101.9(5), 99.9(4); P-Fe-C(4) C(4) 96.5(3), 98.8(4); C(l)-Fe-c(4) 77.6(5); C(2)-Fe-C(3) 38.9(5); 

C(5)-Fe-C(6) 88.4(7). 

of 6a/7a followed by hydrolysis of 6a to give 8a. Comparison of the CD spectrum 
of 8a (Fig. 1) with that of (+)-(cyclohexadienone)Fe(CO), of known (2R) config- 
uration [ll] establishes the absolute configurations of the diastereoisomer pairs 
shown, and it is known that ( - )-(l-methoxycyclohexadiene)Fe(CO), possesses the 
(1R) configuration [12]. We are currently ex amining the diastereoisomeric sep- 
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aration of (l-akoxy-4+lkylcyclohexadiene)Fe(CO), complexes which, in contrast to 
5a/5b undergo regiosekctive formation of [(2-alkoxy-5-alkylcyclohexadienyl)Fe 
(CO),]X salts of utility in natural product synthesis [13]. 
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